Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Computational Development of a Dual Pre-Chamber Engine Concept for Lean Burn Combustion

2016-10-17
2016-01-2242
Pre-chambers are a means to enable lean burn combustion strategies which can increase the thermal efficiency of gasoline spark ignition internal combustion engines. A new engine concept is evaluated in this work using computational simulations of non-reacting flow. The objective of the computational study was to evaluate the feasibility of several engine design configurations combined with fuel injection strategies to create local fuel/air mixtures in the pre-chambers above the ignition and flammability limits, while maintaining lean conditions in the main combustion chamber. The current work used computational fluid dynamics to develop a novel combustion chamber geometry where the flow was evaluated through a series of six design iterations to create ignitable mixtures (based on fuel-to-air equivalence ratio, ϕ) using fuel injection profiles and flow control via the piston, cylinder head, and pre-chamber geometry.
Journal Article

Evaluation of the Seat Index Point Tool for Military Seats

2016-04-05
2016-01-0309
This study evaluated the ISO 5353 Seat Index Point Tool (SIPT) as an alternative to the SAE J826 H-point manikin for measuring military seats. A tool was fabricated based on the ISO specification and a custom back-angle measurement probe was designed and fitted to the SIPT. Comparisons between the two tools in a wide range of seating conditions showed that the mean SIP location was 5 mm aft of the H-point, with a standard deviation of 7.8 mm. Vertical location was not significantly different between the two tools (mean - 0.7 mm, sd 4.0 mm). A high correlation (r=0.9) was observed between the back angle measurements from the two tools. The SIPT was slightly more repeatable across installations and installers than the J826 manikin, with most of the discrepancy arising from situations with flat seat cushion angles and either unusually upright or reclined back angles that caused the J826 manikin to be unstable.
Journal Article

Crushing Analysis and Lightweight Design of Tapered Tailor Welded Hybrid Material Tubes under Oblique Impact

2016-04-05
2016-01-0407
The increasing demand for lightweight design of the whole vehicle has raised critical weight reduction targets for crash components such as front rails without deteriorating their crash performances. To this end the last few years have witnessed a huge growth in vehicle body structures featuring hybrid materials including steel and aluminum alloys. In this work, a type of tapered tailor-welded tube (TTWT) made of steel and aluminum alloy hybrid materials was proposed to maximize the specific energy absorption (SEA) and to minimize the peak crushing force (PCF) in an oblique crash scenario. The hybrid tube was found to be more robust than the single material tubes under oblique impacts using validated finite element (FE) models. Compared with the aluminum alloy tube and the steel tube, the hybrid tube can increase the SEA by 46.3% and 86.7%, respectively, under an impact angle of 30°.
Technical Paper

Comparison of High- and Low-Pressure Electric Supercharging of a HDD Engine: Steady State and Dynamic Air-Path Considerations

2016-04-05
2016-01-1035
This paper numerically investigates the performance implications of the use of an electric supercharger in a heavy-duty DD13 diesel engine. Two electric supercharger configurations are examined. The first is a high-pressure (HP) configuration where the supercharger is placed after the turbocharger compressor, while the second is a low-pressure (LP) one, where the supercharger is placed before the turbocharger compressor. At steady state, high engine speed operation, the airflows of the HP and LP implementations can vary by as much as 20%. For transient operation under the Federal Test Procedure (FTP) heavy duty diesel (HDD) engine transient drive cycle, supercharging is required only at very low engine speeds to improve airflow and torque. Under the low speed transient conditions, both the LP and HP configurations show similar increases in torque response so that there are 44 fewer engine cycles at the smoke-limit relative to the baseline turbocharged engine.
Technical Paper

Experimental Studies of EGR Cooler Fouling on a GDI Engine

2016-04-05
2016-01-1090
Cooled EGR provides benefits in better fuel economy and lower emissions by reducing knocking tendency and decreasing peak cylinder temperature in gasoline engines. However, GDI engines have high particle emissions due to limited mixing of fuel and air, and these particle emissions can be a major source of EGR cooler fouling. In order to improve our knowledge of GDI engine EGR cooler fouling, the effects of tube geometry and coolant temperature on EGR cooler performance and degradation were studied using a four cylinder 2.0L turbocharged GDI engine. In addition, deposit microstructure was analyzed to explore the nature of deposits formed under GDI engine operation. The results of this study showed that a dented tube geometry was more effective in cooling the exhaust gas than a smooth tube due to its large surface area and turbulent fluid motion. However, more deposits were accumulated and higher effectiveness loss was observed in the dented tube.
Technical Paper

Heavy Truck Crash Analysis and Countermeasures to Improve Occupant Safety

2015-09-29
2015-01-2868
This paper examines truck driver injury and loss of life in truck crashes related to cab crashworthiness. The paper provides analysis of truck driver fatality and injury in crashes to provide a better understanding of how injury occurs and industry initiatives focused on reducing the number of truck occupant fatalities and the severity of injuries. The commercial vehicle focus is on truck-tractors and single unit trucks in the Class 7 and 8 weight range. The analysis used UMTRI's Trucks Involved in Fatal Accidents (TIFA) survey file and NHTSA's General Estimates System (GES) file for categorical analysis and the Large Truck Crash Causation Study (LTCCS) for a supplemental clinical review of cab performance in frontal and rollover crash types. The paper includes analysis of crashes producing truck driver fatalities or injuries, a review of regulatory development and industry safety initiatives including barriers to implementation.
Technical Paper

Research on the Characteristics of Enrichment Fuel Injection Process in the Pre-Chamber of a Marine Gas Engine

2015-09-01
2015-01-1961
Fuel injection and fuel-air mixture formation processes have significant influence on the performance of spark ignition gas engines. In order to study the fuel enrichment injection process in the pre-chamber of a marine gas engine, the flow field in the pre-chamber during the gas fuel injection period was investigated by the particle image velocimetry (PIV) method. An organic glass model of pre-chamber was made for optical measurement. The flow fields in the pre-chamber with four different gas injection angles were analyzed, respectively. The measurement results were qualitatively compared to the CFD calculation results as the verification of the calculation. Based on the comparison of the PIV experiment results, an optimal gas fuel injection angle was chosen. Furthermore, 3D CFD calculation models with the baseline and optimal fuel injection angles of a marine spark ignited natural gas engine were generated to calculate the working process.
Technical Paper

A Numerical Investigation of the Vaporization Process of Lubricating Oil Droplets under Gas Engine Conditions

2015-09-01
2015-01-1949
The abnormal combustion resulted by the auto-ignition of lubricating oil is a great challenge to the development of Otto-cycle gas engines. In order to investigate the mechanism of lubricating oil droplet vaporization process, a crucial sub-process of auto-ignition process, a new multi-component vaporization model was constructed for high temperature and pressure, and forced gas flow conditions as encountered in practical gas engines. The vaporization model has been conducted with a multi-diffusion sub-model considering the multi-component diffusivity coefficients in the gas phase. The radiation heat flux caused by ambient gas was taken into account in high temperature conditions, and a real gas equation of state was used for high pressure conditions. A correction for mass vaporization rate was used for forced gas flow conditions. Extensive verifications have been realized, and considerable results have been achieved.
Technical Paper

Researches of Double-Layer Diverging Combustion System (DLDCS) in a DI Diesel Engine

2015-09-01
2015-01-1833
The new DI diesel engine combustion system named Double-Layer Diverging Combustion System (DLDCS) results in a better Brake Specific Fuel Consumption (BSFC) and lower exhaust emissions. The previous results of numerical simulation and bench test of a single cylinder DI diesel engine showed that more homogeneous fuel distribution, better BSFC and lower emission level were obtained by employing this combustion system. In this research, further numerical simulation are employed to seek the best injection advance angle and investigate the influence of different volume fraction and type lines of upper layer with AVL Fire.
Journal Article

Effects of Non-Associated Flow on Residual Stress Distributions in Crankshaft Sections Modeled as Pressure-Sensitive Materials under Fillet Rolling

2015-04-14
2015-01-0602
In this paper, the evolution equation for the active yield surface during the unloading/reloading process based on the pressure-sensitive Drucker-Prager yield function and a recently developed anisotropic hardening rule with a non-associated flow rule is first presented. A user material subroutine based on the anisotropic hardening rule and the constitutive relation was written and implemented into the commercial finite element program ABAQUS. A two-dimensional plane strain finite element analysis of a crankshaft section under fillet rolling was conducted. After the release of the roller, the magnitude of the compressive residual hoop stress for the material with consideration of pressure sensitivity typically for cast irons is smaller than that without consideration of pressure sensitivity. In addition, the magnitude of the compressive residual hoop stress for the pressure-sensitive material with the non-associated flow rule is smaller than that with the associated flow rule.
Technical Paper

Installed Positions of Child Restraint Systems in Vehicle Second Rows

2015-04-14
2015-01-1452
This study documented the position and orientation of child restraint systems (CRS) installed in the second rows of vehicles, creating a database of 486 installations. Thirty-one different CRS were evaluated, selected to provide a range of manufacturers, sizes, types, and weight limits. Eleven CRS were rear-facing only, fourteen were convertibles, five were combination restraints, and one was a booster. Ten top-selling vehicles were selected to provide a range of manufacturers and body styles: four sedans, four SUVS, one minivan, and one wagon. CRS were marked with three reference points on each moving component. The contours and landmarks of each CRS were first measured in the laboratory. Vehicle interior contours, belt anchors, and LATCH anchors were measured using a similar process. Then each CRS was installed in a vehicle using LATCH according to manufacturers' directions, and the reference points of each CRS component were measured to document the installed orientation.
Journal Article

Methods in Vehicle Mass and Road Grade Estimation

2014-04-01
2014-01-0111
Dynamic vehicle loads play critical roles for automotive controls including battery management, transmission shift scheduling, distance-to-empty predictions, and various active safety systems. Accurate real-time estimation of vehicle loads such as those due to vehicle mass and road grade can thus improve safety, efficiency, and performance. While several estimation methods have been proposed in literature, none have seen widespread adoption in current vehicle technologies despite their potential to significantly improve automotive controls. To understand and bridge the gap between research development and wider adoption of real-time load estimation, this paper assesses the accuracy and performance of four estimation methods that predict vehicle mass and/or road grade.
Journal Article

Subjective and Objective Effects of Driving with LED Headlamps

2014-04-01
2014-01-1985
This study was designed to investigate how the spectral power distribution (SPD) of LED headlamps (including correlated color temperature, CCT) affects both objective driving performance and subjective responses of drivers. The results of this study are not intended to be the only considerations used in choosing SPD, but rather to be used along with results on how SPD affects other considerations, including visibility and glare. Twenty-five subjects each drove 5 different headlamps on each of 5 experimental vehicles. Subjects included both males and females, in older (64 to 85) and younger (20 to 32) groups. The 5 headlamps included current tungsten-halogen (TH) and high-intensity discharge (HID) lamps, along with three experimental LED lamps, with CCTs of approximately 4500, 5500, and 6500 K. Driving was done at night on public roads, over a 21.5-km route that was selected to include a variety of road types.
Technical Paper

Experience and Skill Predict Failure to Brake Errors: Further Validation of the Simulated Driving Assessment

2014-04-01
2014-01-0445
Driving simulators offer a safe alternative to on-road driving for the evaluation of performance. In addition, simulated drives allow for controlled manipulations of traffic situations producing a more consistent and objective assessment experience and outcome measure of crash risk. Yet, few simulator protocols have been validated for their ability to assess driving performance under conditions that result in actual collisions. This paper presents results from a new Simulated Driving Assessment (SDA), a 35- to-40-minute simulated assessment delivered on a Real-Time® simulator. The SDA was developed to represent typical scenarios in which teens crash, based on analyses from the National Motor Vehicle Crash Causation Survey (NMVCCS). A new metric, failure to brake, was calculated for the 7 potential rear-end scenarios included in the SDA and examined according two constructs: experience and skill.
Technical Paper

The Quantification of Liver Anatomical Changes and Assessment of Occupant Liver Injury Patterns

2013-11-11
2013-22-0011
Liver injuries can be significant in vehicle crashes. In this study, the liver anatomy was quantified in both adult and pediatric populations as a function of gender and age. Five anatomical liver measurements were determined using CT scans of 260 normal livers. These measurements include the area and volume, and the length, width, and girth of the liver (IRB HUM00041441). To characterize geometrical shape, an inscribed sphere and circumscribed ellipsoid were fitted on the measurements. In the pediatric population the liver area and volume continuously increased with age. When normalized by patient weight, volume measurements show a decrease in volume with age, suggesting that the liver occupies a smaller proportion of the body with age. In the adult population, liver measurements varied with gender. The superior and inferior locations of the liver were also recorded with respect to the spine. The lower portion was at the L3 in small children and at L2 as children approached puberty.
Journal Article

Hydrogen DI Dual Zone Combustion System

2013-04-08
2013-01-0230
Internal combustion (IC) engines fueled by hydrogen are among the most efficient means of converting chemical energy to mechanical work. The exhaust has near-zero carbon-based emissions, and the engines can be operated in a manner in which pollutants are minimal. In addition, in automotive applications, hydrogen engines have the potential for efficiencies higher than fuel cells.[1] In addition, hydrogen engines are likely to have a small increase in engine costs compared to conventionally fueled engines. However, there are challenges to using hydrogen in IC engines. In particular, efficient combustion of hydrogen in engines produces nitrogen oxides (NOx) that generally cannot be treated with conventional three-way catalysts. This work presents the results of experiments which consider changes in direct injection hydrogen engine design to improve engine performance, consisting primarily of engine efficiency and NOx emissions.
Journal Article

Front Rail Crashworthiness Design for Front Oblique Impact Using a Magic Cube Approach

2013-04-08
2013-01-0651
The front rail, as one main energy absorption component of vehicle front structures, should present steady progressive collapse along its axis and avoid bending collapse during the front oblique impact, but when the angle of loading direction is larger than some critical angle, it will appear bending collapse causing reduced capability of crash energy absorption. This paper is concerned with crashworthiness design of the front rail on a vehicle chassis frame structure considering uncertain crash directions. The objective is to improve the crash direction adaptability of the front rail, without deteriorating the vehicle's crashworthiness performance. Magic Cube (MQ) approach, a systematic design approach, is conducted to analyze the design problem. By applying Space Decomposition of MQ, an equivalent model of the vehicle chassis frame is generated, which simplifies the design problem.
Technical Paper

Mixing Effects of Early Injection in Diesel Spray Using LES Model with Different Subgrid Scale Models

2013-04-08
2013-01-1111
Early injection timing is an effective measure of pre-mixture formation for diesel low-temperature combustion. Three algebraic subgrid models (Smagorinsky model, dynamic Smagorinsky model and WALE model) and one-equation kinetic energy turbulent model using modified TAB breakup model (MTAB model) have been implemented into KIVA3V code to make a detailed large eddy simulation of the atomization and evaporation processes of early injection timing in a constant volume chamber and a Ford high-speed direct-injection diesel engine. The results show that the predictive vapor mass fraction and liquid penetration using LES is in good agreement with the experiment results. In combustion chamber, the sub-grid turbulent kinetic energy and viscosity using LES are less than with the RANS models, and following the increasing time, the sub-grid turbulent kinetic energy and viscosity also increase and are concentrated on the spray area.
Technical Paper

Impact of Supplemental Natural Gas on Engine Efficiency, Performance, and Emissions

2013-04-08
2013-01-0847
In this study, the performance and emissions of a 4 cylinder 2.5L light-duty diesel engine with methane fumigation in the intake air manifold is studied to simulate a dual fuel conversion kit. Because the engine control unit is optimized to work with only the diesel injection into the cylinder, the addition of methane to the intake disrupts this optimization. The energy from the diesel fuel is replaced with that from the methane by holding the engine load and speed constant as methane is added to the intake air. The pilot injection is fixed and the main injection is varied in increments over 12 crank angle degrees at these conditions to determine the timing that reduces each of the emissions while maintaining combustion performance as measured by the brake thermal efficiency. It is shown that with higher substitution the unburned hydrocarbon (UHC) emissions can increase by up to twenty times. The NOx emissions decrease for all engine conditions, up to 53%.
Technical Paper

Direct In-cylinder Injection of Water into a PI Hydrogen Engine

2013-04-08
2013-01-0227
Injecting liquid water into a fuel/air charge is a means to reduce NOx emissions. Such strategies are particularly important to hydrogen internal combustion engines, as engine performance (e.g., maximum load) can be limited by regulatory limits on NOx. Experiments were conducted in this study to quantify the effects of direct injection of water into the combustion chamber of a port-fueled, hydrogen IC engine. The effects of DI water injection on NOx emissions, load, and engine efficiency were determined for a broad range of water injection timing. The amount of water injected was varied, and the results were compared with baseline data where no water injection was used. Water injection was a very effective means to reduce NOx emissions. Direct injection of water into the cylinder reduced NOx emissions by 95% with an 8% fuel consumption penalty, and NOx emissions were reduced by 85% without any fuel consumption penalty.
X